Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam August 2017: Problem 2 Solution

Exercise. Let X be a set, and μ^* be an outer measure on X such that $\mu^*(X) < \infty$. Define ν^* by letting

$$\nu^*(E) = \sqrt{\mu^*(E)} \quad \text{for every } E \subseteq X$$

Prove that

(a) ν^* is an outer measure

Solution.

$$\nu^*$$
 is an outer measure if $\nu^* : \mathcal{P}(X) \to [0, \infty]$
i) $\nu^*(\emptyset) = 0$
ii) $\nu^*(A) \le \nu^*(B)$ for $A \subseteq B$
iii) $\nu^*(\bigcup_1^\infty A_j) \le \sum_1^\infty \nu^*(A_j)$
Since μ^* is an outer measure $\mu^* \ge 0 \implies \nu^*(E) = \sqrt{\mu^*(E)} \ge 0$ for all $E \subseteq X$
i) Also, $\mu^*(\emptyset) = 0 \implies \nu^*(\emptyset) = \sqrt{\mu^*(\emptyset)} = \sqrt{0} = 0$
ii) For $A \subseteq B$,
 $\nu^*(A) = \sqrt{\mu^*(A)}$
 $\le \sqrt{\mu^*(B)}$ since $0 \le \mu^*(A) \le \mu^*(B)$
 $= \nu^*(B)$
iii)
 $\nu^*\left(\bigcup_{1}^\infty A_j\right) = \sqrt{\mu^*\left(\bigcup_{1}^\infty A_j\right)}$
 $\le \sqrt{\sum_{1}^\infty \mu^*(A_j)}$
 $\le \sum_{1}^\infty \sqrt{\mu^*(A_j)}$
 $= \sum_{1}^\infty \nu^*(A_j)$

Thus, ν^* is an outer measure.

(b) A subset $A \subseteq X$ belongs in the Caratheodory σ -algebra of ν^* (the σ -algebra of ν^* -measurable sets) if and only if $\nu^*(A) = 0$ or $\nu^*(A^C) = 0$.

Solution. $A \subseteq X$ is ν^* measurable if $\nu^*(E) = \nu^*(E \cap A) + \nu^*(E \cap A^C)$ for all $E \subset X$. A σ -algebra is closed under countable unions and complements. (\Leftarrow) Since ν^* an outer measure, $\nu^{*}(E) = nu^{*}((E \cap A) \cup (E \cap A^{C})) < \nu^{*}(E \cap A) + \nu^{*}(E \cap A^{C})$ And $(E \cap A) \subseteq E$ and $(E \cap A^C) \subseteq E$, so If $\nu^*(A) = 0$ $\nu^{*}(E) < \nu^{*}(E \cap A) + \nu^{*}(E \cap A^{C}) = \nu^{*}(E \cap A^{C}) < \nu^{*}(E)$ If $\nu^*(A^C) = 0$ $\nu^{*}(E) < \nu^{*}(E \cap A) + \nu^{*}(E \cap A^{C}) = \nu^{*}(E \cap A) < \nu^{*}(E)$ Thus, $\nu^*(E) = \nu^*(E \cap A) + \nu^*(E \cap A^C)$ and A is ν^* measurable and belongs to a Caratheodory σ -algebra of ν^* (\Longrightarrow) If A is in the σ -algebra of ν^* measurable sets then $\nu^{*}(E) - \nu^{*}(E \cap A) + \nu^{*}(E \cap A^{C}),$ $\forall E \subseteq X$ $\sqrt{\mu^*(E)} = \sqrt{\mu^*(E \cap A)} + \sqrt{^*(E \cap A^C)}$ $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^C) + \sqrt{\mu^*(E \cap A)\mu^*(E \cap A^C)}$ $> \mu^*(E \cap A) + \mu^*(E \cap A^C)$ But μ^* is an outer measure so, $\mu^{*}(E) < \mu^{*}(E \cap A) + \mu^{*}(E \cap A^{C})$

Thus,

$$\mu^*(E \cap A)\mu^*(E \cap A^C) = 0$$

Setting $E = X$, this means $\mu^*(A) = 0$ or $\mu^*(A^C) = 0$